a) Ta có: \(x^3+x^2+4\)
\(=x^3+2x^2-x^2+4\)
\(=x^2\left(x+2\right)-\left(x+2\right)\left(x-2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
b) Ta có: \(9x^2+12x-5\)
\(=9x^2+15x-3x-5\)
\(=3x\left(3x+5\right)-\left(3x+5\right)\)
\(=\left(3x+5\right)\left(3x-1\right)\)
c) Ta có: \(x^4+1997x^2+1996x+1997\)
\(=x^4+x^2+1+1996x^2+1996x+1996\)
\(=\left(x^4+2x^2+1-x^2\right)+1996\left(x^2+x+1\right)\)
\(=\left[\left(x^2+1\right)^2-x^2\right]+1996\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
d) Ta có: \(x^2-x-2001\cdot2002\)
\(=x^2-2002x+2001x-2001\cdot2002\)
\(=x\left(x-2002\right)+2001\left(x-2002\right)\)
\(=\left(x-2002\right)\left(x+2001\right)\)