Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Giải các phương trình sau theo phương pháp đặt ẩn phụ:
a.{\(\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\)
\(\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\)
b.{\(4\sqrt{x+3}-9\sqrt{y+1}=2\)
\(5\sqrt{x+3}+3\sqrt{y+1}=31\)
1/Giải phương trình:
a. \(3x+4y=5\sqrt{x^2+y^2}\)
b. \(\dfrac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}=\dfrac{10\sqrt{3}+15+6\sqrt{5}}{60}\)
c. \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{2018}{2019}\)
d.\(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
e. \(\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-1}}{y}=1\)
2/Giải phương trình:
a.\(\sqrt{x-2}-\sqrt{2x-3}=\dfrac{1-x}{2x-3}\)
b.\(x^2+\dfrac{x^2}{\left(x+1\right)^2}=3\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y+z=9\\\sqrt{x}+\sqrt{y}+\sqrt{z}=5\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\end{matrix}\right.\)
Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)và B=\(\dfrac{x-5}{x-1}\)-\(\dfrac{2}{\sqrt{x}+1}\)+\(\dfrac{4}{\sqrt{x}-1}\)với x≥0;x≠1
1. Tính giá trị của biểu thức A tại x=36
2.Chứng minh rằng B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. Đặt P=A/B.Tìm các giá trị x nguyên để \(\sqrt{P}\)<1/2
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x}+\dfrac{3}{\sqrt{x}}=\sqrt{y}+\dfrac{3}{\sqrt{y}}\\2x-\sqrt{xy}-1=0\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x}{x+y}+\dfrac{1}{\sqrt{x}-1}=3\\\dfrac{3y}{x+y}+\sqrt{x}=-2\end{matrix}\right.\)
Giải HPT: \(\left\{{}\begin{matrix}2\sqrt{x}\left(1+\dfrac{1}{x+y}\right)=3\\2\sqrt{y}\left(1-\dfrac{1}{x+y}+1\right)\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(xy-2\right)^2+6y=3\left(\dfrac{1}{x}-\dfrac{3}{x^2}\right)\\y^3-4y^2+\dfrac{6}{x}+\left(y-1\right)\sqrt{\left(3y-2\right)}=\dfrac{9}{x^2}\end{matrix}\right.\)