\(x^3+8y^3\\ =x^3+\left(2y\right)^3\\ =\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(8y^3-125\\ =\left(2y\right)^3-5^3\\ =\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(a^6-b^3\\ =\left(a^2\right)^3-b^3\\ =\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(8x^3-\frac{1}{8}\\ =\left(2x\right)^3-\left(\frac{1}{2}\right)^3\\ =\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
\(x^{32}-1\\ =\left(x^{16}\right)^2-1^2\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(4x^2+4x+1\\ =\left(2x+1\right)^2\)
\(x^2-20x+100\\ =\left(x-10\right)^2\)
\(y^4-14y^2+49\\ =\left(y^2-7\right)^2\)