Câu 1:Chứng minh với mọi \(x\ge0;x\ne4\)thì biểu thức Q=\(\frac{\sqrt{x}+2}{\sqrt{x+4}}\)không thể nhận giá trị nguyên
Câu 2:Giải các phương trình sau:
a)\(4x^2+11x+18=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
b)\(3x^2-11x-22=7\sqrt{\left(x+2\right)\left(x+5\right)\left(x-7\right)}\)
Câu 3:Giải các hệ phương trình:
a)\(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2\right)+y\left(x^2-5\right)=xy^2-5x\\4x\sqrt{y+3}+2\sqrt{2x-1}=4y^2+3x+3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}.\left(2x+3\right)-2y=y^3\\\sqrt{2x+13}+5=3y+\sqrt{2x+6}\end{matrix}\right.\)
Câu 4:Giả sử (x;y) là các số thực thỏa mãn:
\(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức \(P=x^2+xy+y^2\)
Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
Giải các phương trình :
a) \(3x^2+4\left(x-1\right)=\left(x-1\right)^2+3\)
b) \(x^2+x+\sqrt{3}=\sqrt{3}x+6\)
c) \(\dfrac{x+2}{1-x}=\dfrac{4x^2-11x-2}{\left(x+2\right)\left(x-1\right)}\)
d) \(\dfrac{x^2+14x}{x^3+8}=\dfrac{x}{x+2}\)
Bài 1: giải hệ pt
\(\left\{{}\begin{matrix}x+2y=1\\2x^{2^{ }}-5xy=48\end{matrix}\right.\)
bài 2: giải các pt sau:
a/ \(\left(x^2-1\right)^2-4\left(x^2-1\right)=5\)
b/\(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\)
c/ \(\left(x^2-3x+4\right)\left(x^2-3x+2\right)=3\)
giải phương trình
a,\(x-5\sqrt{x}-14=0\)
b, \(\left(x^2+x+1\right)\left(x^2+x+2\right)=2\)
c, \(2\left(x+\dfrac{1}{2}\right)^2\left(x+\dfrac{1}{x}\right)+10=0\)
d, \(\left(x+1\right)\left(x-5\right)\left(x+3\right)\left(x-7\right)=63\)
a) Gỉai phương trình :
\(3x^{2^{ }}-2x\sqrt{3}-3=0\)
b) Gỉai hệ phương trình :
\(\left\{{}\begin{matrix}x\left(x-1\right)+y=\left(x+1\right)\left(x-3\right)\\2x-3y=-1\end{matrix}\right.\)
Giải các phương trình :
a) \(x^3+4x^2+x-6=0\)
b) \(x^3-2x^2-5x+6=0\)
c) \(2x^4+2\sqrt{2}x^3+\left(1-3\sqrt{2}\right)x^2-3x-4=0\)
d) \(\left(2x^2+7x-8\right)\left(2x^2+7x-3\right)-6=0\)
a) Gỉai phương trình :
\(3x^2-2x\sqrt{3}-3=0\)
b) Gỉai hệ phương trình sau :
\(\left\{{}\begin{matrix}x\left(x-1\right)+y=\left(x+1\right)\left(x-3\right)\\2x-3y=-1\end{matrix}\right.\)
\(ChoC=\left(\frac{x+2\sqrt{x}}{x+4\sqrt{x}+4}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2\sqrt{x}+2}{x+\sqrt{x}}\right)\left(x>0;x\ne4;x\ne9\right)\)
Rút gọn C