Đặt
\(A=x^2-x+1\)
\(A=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Xét \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(=>\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy \(Min_A=\dfrac{3}{4}\) . Dấu \(=\) xảy ra khi \(x=\dfrac{1}{2}\)
\(A=x^2-x+1\)
\(A=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi:
\(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)