+) Giá trị nhỏ nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{-\left(x^2+1\right)+x^2+6x+9}{x^2+1}\) \(=-1+\dfrac{\left(x+3\right)^2}{x^2+1}\ge-1\)
Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
+) Giá trị lớn nhất
Ta có: \(A=\dfrac{6x+8}{x^2+1}=\dfrac{9\left(x^2+1\right)-9x^2+6x-1}{x^2+1}\) \(=9-\dfrac{\left(3x-1\right)^2}{x^2+1}\ge9\)
Dấu bằng xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(P_{Min}=-1\) khi \(x=-3\)
\(P_{Max}=9\) \(\Leftrightarrow x=\dfrac{1}{3}\)