TL:
Hàm số trên có thể phân tích thành: f(x) = x + \(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{1-x}\) = \(\left(x+\frac{1}{x}\right)+\left(x+x+\frac{1}{x^2}\right)+\left(2\left(1-x\right)+\frac{1}{1-x}\right)-2\)
Áp dụng định lý Cô si ta có: f(x) \(_{ }\ge\) 2 + 3 + 2\(\sqrt{2}\) - 2 = 3 + 2\(\sqrt{2}\)
Suy ra: Min(f) = 3 + 2\(\sqrt{2}\)