Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huyền Trang

Cho f(x) = \(mx^2+2\left(m-1\right)x+m+3\). Tìm m để f(x)>0 với mọi x>1

Akai Haruma
4 tháng 4 2021 lúc 3:17

Lời giải: 

Với $x>1$

$f(x)=m(x^2+2x+1)-2x+3>0\Leftrightarrow m>\frac{2x-3}{(x+1)^2}$

$\Leftrightarrow m>\frac{2x-3}{(x+1)^2}(\max)$ khi $x>1$

Xét $g(x)=\frac{2x-3}{(x+1)^2}$ với $x>1$

$g(x)=\frac{2(x+1)-5}{(x+1)^2}=\frac{2}{x+1}-\frac{5}{(x+1)^2}=\frac{1}{5}-5(\frac{1}{x+1}-\frac{1}{5})^2\leq \frac{1}{5}$ với mọi $x>1$

Do đó: $m>\frac{1}{5}$


Các câu hỏi tương tự
Ánh Dương
Xem chi tiết
vvvvvvvv
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Scarlett
Xem chi tiết
A Lan
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
lương xuân trường
Xem chi tiết
Khổng Tử
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết