(x - 1)(2x + 1) > 0
<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>\frac{-1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x>\frac{-1}{2}\end{matrix}\right.\end{matrix}\right.< =>\left[{}\begin{matrix}x>1\\x< \frac{-1}{2}\end{matrix}\right.\)
(2x - 1)(3 - x) <0
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \frac{1}{2}\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x>\frac{1}{2}\\x>3\end{matrix}\right.\end{matrix}\right.< =>\left[{}\begin{matrix}x< \frac{1}{2}\\x>3\end{matrix}\right.\)