lập phương trình đường tròn có tâm thuộc đường thẳng \(\Delta\) \(x+2y+3=0\), có bán kính \(R=\sqrt{2}\) và tiếp xúc với đường thẳng d : \(x-y+1=0\)
1. Mệnh đề nào đúng , giải thích ?
a ) P: ∃ xϵ R, 5x _ 3x 2 ≤ 1
2. Xem mđ đó đúng hay sai
a) P= ∃ x ϵ R: x 2 ≤ 0
b) P = ∀ x ϵ R : x ≤ x 2
c) P = ∀ x ϵ Q : 4x2 - 1 ≠ 0
d) P = ∃ x ϵ R : x2 - x + 7 nhỏ hơn 0
Với mọi x thuộc r, (x-1)^2 khác x-1
Những mệnh đề sau đúng hay sai, giải thích
a) A: "∃ x ∈ R: x2 + 3x = 4"
b) B: "∀x∈ R: 2x2 - 3x - 5 = 0"
c) C: "∀x ∈ R: x2 + 2x + 1 ≠ 0"
d) D: "∃ x ∈ N: 3x2 + 2x - 1 = 0"
e) E:" ∃ x ∈ Q: 3x2 + 2x -1 = 0"
f) F: "∀ x ∈ R: x2 + 2x + 5 > 0"
Phát biểu bằng lời các mệnh đề sau và xét tính đúng sai của chúng :
a.∀ x ∈ R : x^2 -1/x-1 = x+1
c.∀ x ∈ R :x ^2 +x+1 >0
Giải thích dùm mình có số x nào thõa mãn x^2 +1 = 0 với ạ.
∀x ∈ R, x^2 + 1 ≥ 0
cho mệnh đề P: " ∃x ∈ |R , x^2 +2x+3>0 " xét tính đúng sai của mệnh đề
giáo viên giải: vì x^2 +2x+3= (x+1)^2 +2 ≥ 2 >0 => ∀x ∈ |R , x^2 +2x+3>0 => mệnh đề P saicho mình hỏi làm vậy có đúng không? :(
nếu viết ra ta được mệnh đề phủ định của P là :'' ∀x ∈ |R , x^2 +2x+3 ≤0 '' => SAInhưng theo lý thuyết thì 1 trong 2 (mệnh đề P và mệnh đề phủ định của nó) phải có 1 đúng 1 sai chứ??
∀x∈R: x^2 - x = 1 > 0
làm ơn giúp mik với ạ (=^-^=)
Phát biểu thành lời các mệnh đề sau và xét tính đúng sai của chúng ?
a) \(\forall x\in R:x^2\le0\)
b) \(\exists x\in R:x^2\le0\)
c) \(\forall x\in R:\dfrac{x^2-1}{x-1}=x+1\)
d) \(\exists x\in R:\dfrac{x^2-1}{x-1}=x+1\)
e) \(\forall x\in:x^2+x+1>0\)
f) \(\exists x\in:x^2+x+1>0\)
Cho đa thức f(x)=ax+b
Tìm điều kiện của các hằng số a,b để: f(x1+x2)=f(x1)+f(x2)
với mọi x thuộc R