Cho x,y,z là các số thực thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
Hãy tính giá trị của biểu thức: \(M=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Cho \(Q=\left(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1+x}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) với \(x>0; x\ne1\)
Tìm số nguyên x lớn nhất để Q có giá trị nguyên
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) Rút gọn Q
b) Tìm số nguyên x để Q có giá trị nguyên
Cho cách số thực x, y thỏa mãn xy > 2020x+2020yChứng minh x + y > \(\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0
1.rút gọn biểu thức P
2.tìm các số nguyên x thảo mãn P>0
Cho 3 số thực x,y,z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\)
Chứng minh: \(\dfrac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\dfrac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
cho a,b,c là các số thực dương.cmr
\(\dfrac{xyz}{\left(1+3x\right)\left(z+6\right)\left(x+8y\right)\left(y+9z\right)}\le\dfrac{1}{7^4}\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)