Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Vũ Tiền Châu

với mọi a,b,c>0 chứng minh rằng

\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}< =\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Akai Haruma
31 tháng 8 2017 lúc 16:39

Lời giải:
Ta có:

Nhân cả hai vế với $a+b+c$ , BĐT cần chứng minh tương đương với:

\(\frac{(a^2+b^2)(a+b+c)}{a+b}+\frac{(b^2+c^2)(a+b+c)}{b+c}+\frac{(c^2+a^2)(a+b+c)}{c+a}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)+\frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq 3(a^2+b^2+c^2)\)

\(\Leftrightarrow \frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow \frac{c(a+b)^2-2abc}{a+b}+\frac{a(b+c)^2-2abc}{b+c}+\frac{b(a+c)^2-2abc}{a+c}\leq a^2+b^2+c^2\)

\(\Leftrightarrow 2(ab+bc+ac)\leq a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

---------------------------------------------------------------------

Áp dụng BĐT Cauchy- Schwarz:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

\(\Rightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

Ta cần chứng minh \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(a+c)\)

(luôn đúng theo BĐT Schur)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

Bình luận (5)
Lightning Farron
3 tháng 9 2017 lúc 8:34

Chia 2 vế của BĐT cho \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)L

\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(\sum_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)

\(\Leftrightarrow\sum_{perms}a^2b(a-b)^2\ge0\) *đúng* XD

Bình luận (1)

Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
Nguyễn Mary
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Mary
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
Nguyễn Mary
Xem chi tiết
:vvv
Xem chi tiết
dsadasd
Xem chi tiết