\(A=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
\(\Rightarrow A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\ge\left|x-2017+x-2018+2019-x+2020-x\right|\)
\(\Rightarrow A\ge\left|4\right|\)
\(\Rightarrow A\ge4.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2017\right).\left(x-2018\right).\left(2019-x\right).\left(2020-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017\ge0\\x-2018\ge0\\2019-x\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017\le0\\x-2018\le0\\2019-x\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2017\\x\ge2018\\x\le2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2017\\x\le2018\\x\ge2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2018\le x\le2019\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=4\) khi \(2018\le x\le2019.\)
Chúc bạn học tốt!