Tìm tất cả các giá trị thực của tham số m để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có tập nghiệm S=R
Cho bất pt \(\frac{mx^2+2mx+3m+3}{x^2-2x+2}\) > 1. Tìm m để:
a. Mọi số thực x đều thỏa mãn bpt
b. Có ít nhất một số thực x thỏa mãn bpt
c. Tập nghiệm S của bpt có ít nhất 2 phần tử và |x-x'| < 1 với mọi x,x' thuộc S
Với giá trị nào của tham số m hệ phương trình có nghiệm thỏa mãn điều kiện \(x>0,y< 0\) >
\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\\m^4x+\left(2m^2+1\right)y=1\end{matrix}\right.\)
Tìm các giá trị của tham số m để các bất phương trình sau nghiệm đúng với mọi x :
a) \(\dfrac{x^2-mx-2}{x^2-3x+4}>-1\)
b) \(m\left(m+2\right)x^2+2mx+2>0\)
1)Cho phương trình x^2 -2mx + 2m-1=0
Chứng tỏ rằng phương trình luôn có nghiệm với mọi m
2) giải các phương trình và bất phương trình:
a) √3-x = x+3
b) |x^2 -3x+2| =< 8-2x
c) √ 8+2x -x^2 > 6-3x
3) Cho bpt 2x^2+(m-1)x +1-m >0
Tìm m để bpt có nghiệm đúng với mọi x
1. Tìm tất cả các giá trị của tham số m để hàm số f(x) = \(\sqrt{\left(m+4\right)x^2-\left(m-4\right)x-2m+1}\) xác định với mọi x thuộc R
Cho tam thức bậc 2:f(x)=x2-(m+2)x+8m+1(m à tham số).Có bao nhiêu giá trị nguyên của tham số m trên [-2022;2022] để f(x) luôn không âm với mọi x
1,với giá trị nào của a thì bpt \(ax^2-x+a\ge0,\forall x\in R\)
2,cho f(x)=\(-2x^2+\left(m+2\right)x+m-4\) tìm m để f(x) âm với mọi x
3,tìm m để x2-2(2m-3)x+4m-3>0, với mọi x thuộc R
4, cho f(x)=mx2-2x-1. Xác định m để f(x)<0 với mọi x thuôc R
Tìm các giá trị của tham số m để các phương trình sau vô nghiệm
a. \(\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\)
b. \(\left(3-m\right)x^2+2\left(m+3\right)x+m+2=0\)