a)\(\dfrac{x^2-mx-2}{x^2-3x+4}>-1\) (1)
Do \(x^2-3x+4>0\forall x\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x^2-\left(m+3\right)x+2>0\)
Để bất phương trình nghiệm đúng với mọi x thì:
\(\Delta< 0\)\(\Leftrightarrow\left(m-3\right)^2-4.2.2< 0\)\(\Leftrightarrow\left(m-3\right)^2-16< 0\)
\(\Leftrightarrow\left(m-7\right)\left(m+1\right)< 0\)\(\Leftrightarrow-1< m< 7\).
b)
với m =0 => 2 >0 đúng với mọi x => m=0 nhận
với m=-2 => -4x+2>0 loại m =-2
khi m khác -2 và 0
để BPT nghiệm đúng mọi x m cần thỏa điều sau
(1) hệ số a>0 => m<-2 hoặc m> 0
(2) \(\Delta'< 0\Rightarrow m^2-2\left(m^2+2m\right)< 0\Rightarrow-m^2-4m< 0\Rightarrow\)\(\left[{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
(1) và (2)
\(\left[{}\begin{matrix}m< -2\\m>4\end{matrix}\right.\)