§5. Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Ngọc

Tìm tất cả các giá trị của tham số m để bất phuơng trình \(x^2+2\left(3-m\right)x+1-4\sqrt{2x^3+2x}\) ≥ 0 nghiệm đúng với mọi x ≥ 0

Nguyễn Việt Lâm
25 tháng 5 2020 lúc 13:33

- Với \(x=0\) BPT luôn đúng

- Với \(x>0\)

\(\Leftrightarrow x+2\left(3-m\right)+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}\ge0\)

\(\Leftrightarrow x+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}+6\ge2m\)

Đặt \(\sqrt{2\left(x+\frac{1}{x}\right)}=t\) ; do \(x+\frac{1}{x}\ge2\Rightarrow t\ge2\)

BPT tương đương: \(\frac{t^2}{2}-4t+6\ge2m\)

\(\Leftrightarrow f\left(t\right)=t^2-8m+12\ge4m\)

Để BPT đúng với mọi \(t\ge2\)

\(\Leftrightarrow4m\le\min\limits_{t\ge2}f\left(t\right)\)

Xét \(f\left(t\right)\) khi \(t\ge2\) ; \(-\frac{b}{2a}=4>2\) ; \(a=1>0\)

\(\Rightarrow f\left(t\right)_{min}=f\left(4\right)=-4\)

\(\Rightarrow4m\le-4\Rightarrow m\le-1\)