Với giá trị nào của m thì pt : \(x^4-\left(2m+1\right)x^2+m+3=0\) có 4 nghiệm phân biệt trong đó một nghiệm nhỏ hơn -2 còn 3 nghiệm kia lớn hơn -1.
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
1.Với giá trị nào của m thì BPT thỏa mãn sau thỏa mãn với mọi x
\(x^2-2mx+2\left|x-m\right|+2>0\)
2. Với giá trị nào của m thì BPT sau có nghiệm
\(x^2+2\left|x-m\right|+m^2+m-1\le0\)
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
Cho bất phương trình \(\left(m^2-4\right)x^2+\left(m-2\right)x+1< 0\). Tìm tất cả các giá trị tham số m lm bất pt vô nghiệm có dạng \((-\infty;4]\cup[b;+\infty)\). Tính giá trị a.b
tìm các giá trị m sao cho phương trình : x4 + (1 - 2m)x2 + m2 - 1 = 0 : a) vô nghiệm ; b) có 2 nghiệm phân biệt ; c) có 4 nghiệm phân biệt .
tìm các giá trị m sao cho phương trình : x4 + (1 - 2m)x2 + m2 - 1 = 0 : a) vô nghiệm ; b) có 2 nghiệm phân biệt ; c) có 4 nghiệm phân biệt .
1. Tìm tất cả các giá trị của tham số m để bất phuong trình sau có nghiệm:
\(\sqrt{x-1}-2\sqrt[4]{x^2-x}+m\sqrt{x}\le0\)
2. Tìm giá trị nguyên nhỏ nhất của tham số m để bất phuong trình sau có nghiệm:
\(3\sqrt{x-3}+m\sqrt{x+3}>2\sqrt[4]{x^2-9}\)
Bài 3 : Tìm các giá trị của m để phương trình \(\sqrt{x-1}+\frac{x-m}{\sqrt{x-1}}=\frac{2m}{\sqrt{x-1}}\) có nghiệm