Có bao nhiêu giá trị nguyên m để phương trình \(x^2-4\sqrt{x^2+1}-\left(m-1\right)=0\) có 4 nghiệm phân biệt
tìm tất cả các giá trị của tham số m để bất phương trình sau có No:
\(\sqrt{2+x}+\sqrt{4-x}-\sqrt{8+2x-x^2}\le m\)
tìm tất cả các giá trị của tham số m để bất phương trình sau có No:
\(\sqrt{2+x}+\sqrt{4-x}-\sqrt{8+2x-x^2}\le m\)
Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
tím tất cả giá trị thực của tham số m để phương trình: (2m-4)x =3 có nghiệm duy nhất
A. m =2
B. m ≠ -1
C. m = -1
D. m ≠ 2
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm
bài 1: tìm các giá trị của m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\) đúng với mọi x thuộc R
bài 2: cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\) xác định m để bất phương trình nghiệm đúng với mọi x thuộc [2;4]
bài 3: cho hàm số f(x)=\(-x^2+4\left|x-1\right|+x\). gọi giá trị lớn nhất, nhỏ nhất của hàm số trên [-3;3] lần lượt là M và m. Giá trị biểu thức 4M+2m-3 bằng ?
Hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1, với giá trị của m bằng ?
Phương trình \(\left|x-2\right|\left(x+1\right)+m=0\) có ba nghiệm phân biệt, giá trị của tham số m là ?