ĐKXĐ: \(a\ge\sqrt{a^2+1}\)
\(\Leftrightarrow\sqrt{a^2+1}\le a\)
\(\Leftrightarrow a>=0\)
ĐKXĐ: \(a\ge\sqrt{a^2+1}\)
\(\Leftrightarrow\sqrt{a^2+1}\le a\)
\(\Leftrightarrow a>=0\)
cho biểu thức \(P=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a)Tìm x để biết P có nghĩa và rút gọn P
b)với giá trị nào của x thì P<1
Cho biểu thức : P = \(\dfrac{2}{1-\sqrt{a}}\)với a >0 và a ≠1
Với những giá trị nào của a thì P\(>\dfrac{1}{2}\)
cho biểu thức A=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (với a>0)
a.rút gọn biểu thức A
b.tính giá trị nhỏ nhất của A
Bài 3. Cho biểu thức : B = 1/(2sqrt(x) - 2) - 1/(2sqrt(x) + 2) + (sqrt(x))/(1 - x) A = (1 - (5 + sqrt(5))/(1 + sqrt(5)))((5 - sqrt(5))/(1 - sqrt(5)) - 1)
a) Tính A
b) Tìm ĐKXĐ rồi rút gọn biểu thức B;
c) Tính giá trị của B với x = 9
d) Tìm giá trị của x để |B| = A
Cho biểu thức: A=\(\dfrac{3}{\sqrt{a}+1}-\dfrac{1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-3}{a-1}\)với a\(\ge\)0 và a\(\ne\)1
a.Rút gọn biểu thức A
b.Tính giá trị biểu thức A khi a=3-\(2\sqrt{2}\)
Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)và B=\(\dfrac{3x}{x-2\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)với x>0,x\(\ne\)1
1.Tính giá trị biểu thức khi A=0,09
2.Rút gọn biểu thức B và M=B:A
3.Tìm giá trị x để biểu thức M<1
* Cho biểu thức
A= \(\left(1-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)(với x > 0, x ≠ 1)
a. Rút gọn biểu thức A
b. Tính giá trị của A khi a=3- \(2\sqrt{2}\)
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A