a,Đặt \(A=x^2-2x+y^2-4y+7\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(MIN_A=2\) khi x = 1, y = 2
b, Đặt \(B=x^2+x+1=\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy \(MIN_B=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)