\(D=\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)\)
\(D=\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)\)
\(D=\left(x^2+4x-5\right)\left(x^2+4x-21\right)\)
Đặt \(t=x^2+4x-13\) ta được:
\(D=\left(t+8\right)\left(t-8\right)\)
\(D=t^2-64\)
\(D=\left(x^2+4x-13\right)^2-64\ge-64\)
Vậy GTNN của D là -64 khi x = \(-2+\sqrt{17}\) hoặc x = \(-2-\sqrt{17}\)