Ôn tập: Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn phùng phước

Với a,b,c là 3 cạnh tam giác hãy tìm GTNN của biểu thức: P = \(\dfrac{4a}{b+c-a}+\dfrac{9b}{a+c-b}+\dfrac{16c}{a+b-c}\)

Akai Haruma
20 tháng 2 2019 lúc 23:35

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{9(a+b+c)}{2(a+c-b)}+\frac{8(a+b+c)}{a+b-c}\)

\(=2(a+b+c)\left(\frac{1}{b+c-a}+\frac{\frac{9}{4}}{a+c-b}+\frac{4}{a+b-c}\right)\)

\(\geq 2(a+b+c).\frac{(1+\frac{3}{2}+2)^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}.(a+b+c).\frac{1}{a+b+c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\)

Vậy \(P_{\min}=26\)


Các câu hỏi tương tự
Thiên Diệp
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
Mai Xuân Phong
Xem chi tiết
Nguyễn Thị Thu Trng
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Nguyễn Thị Ngọc Ly
Xem chi tiết
Võ Lan Nhi
Xem chi tiết