1)tính
a)\(\left(\dfrac{1}{5}\sqrt{500}-3\sqrt{45}+5\sqrt{20}\right):\sqrt{5}\)
b)\(\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right).\sqrt{\dfrac{1}{48}}\)
c)\(\left(\dfrac{2\sqrt{3}+3}{\sqrt{3}+2}+\dfrac{2\sqrt{2}}{\sqrt{2}+1}\right):\left(\sqrt{12}+\sqrt{18}\right)\)
Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
Với số tự nhiên n, \(n\ge3\). Đặt \(S_n=\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\). Chứng minh: \(S_n< \dfrac{1}{2}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Rút gọn các biểu thức sau:
a) \(\left(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)\)
b) \(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\) với x>0
cho \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
1, rút gọn P
2, tìm x để \(P\ge0\)
tính P khi \(x=-\sqrt{3-2\sqrt{2}}+\dfrac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}\)
Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho \(P=\left(\dfrac{a-3\sqrt{a}+2}{3a-7\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-8\sqrt{a}-3}+\dfrac{8\sqrt{a}}{9a-1}\right):\left(1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}\right)\)
Tìm giá trị nguyên lớn nhất của a để \(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\)