D={x|x=k2, k=(3n)2, 1<=n<=4}
F={x|x=3k; 1<=k<=5}
D={x|x=k2, k=(3n)2, 1<=n<=4}
F={x|x=3k; 1<=k<=5}
Cho các tập hợp sau A= \(\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\) và B=\(\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Tìm A \(\cap\) B
a. xác định các tập hợp X sao cho {a;b}\(\subset X\subset\left\{a;b;c;d;e\right\}\)
b. cho A= {1;2} ; B={1;2;3;4;5}. xác định các tập hợp X sao cho \(A\cup X=B\)
c. tìm A;B biết \(A\cap B=\left\{0;1;2;3;4;5\right\};A\B=\left\{-3;-2\right\};B\A=\left\{6;9;10\right\}\)
Cho E=\(\left\{x\in Z,\left|x\right|\le5\right\}\) ; F=\(\left\{x\in N,\left|x\right|\le5\right\}\); B=\(\left\{x\in Z,\left(x-2\right)\left(x+1\right)\left(2x^2-x-3=0\right)\right\}\)
a. Chứng minh: A⊂E và B⊂E
b. Tìm quan hệ của hai tập \(C_E^{A\cap B}\) và \(C^{A\cup B}_E\)
c. CM rằng: \(C^{A\cap B}_E\)⊂\(C_E^A\)
\(D=\left\{1;-2;7\right\}\)
nêu tc đặc trưng
Cho các tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right);B=\left(-\infty;m\right);C=\left(2m;+\infty\right)\) tìm m để\(A\cap B\cap C\ne\varnothing\)
a) \(\left[m;m+2\right]\cap\left[-1;2\right]=\varnothing\) khi nào?
b) \(\left(\text{-∞; 9a }\right)\cap\left(\frac{4}{a};\text{+∞ }\right)\ne\varnothing\) khi nào?
c) \(\left(\text{-∞;a }\right)\cup\left(\frac{4}{a};\text{+∞ }\right)=R\) khi nào?
d) [ m-3; 9) có 7 phần tử nguyên khi nào?
Cho N(A) là số phần tử của tập A. Cho N(A) = 25 ; N(B) = 29 ; N\(\left(A\cup B\right)=41\). Tính N(A\B) ; N(B\A) ; \(N\left(A\cap B\right)\)
Cho tập hợp E= { x thuộc Z | ( 3x2 +8 ) / ( x2 +1 ) thuộc Z } . Tìm tập X sao cho X giao E= { -2; 2} và X hợp E= { -2;-1;0;1;2 }. Chỉ rõ tính chất đặc trưng cho các phần tử của X