cho hàm số y = f(x) = 2\(\sin\)2x .
a) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
b) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
tìm GTLN và GTNN
1.y=\(3\sin^2x-2\)
2.y=\(2\sin^3x+\sin x\)
3.y=\(\cos^2x-2\sin x\)
4.y=\(\sin^2x+\cos^4x\)
5.y=\(\sin^4x+\cos^4x+\sin x\times\cos x\)
tìm GTLN và GTNN
1. y=\(2\sin^3x+\sin x\)
2. y=\(\cos^2x-2\sin x\)
3. y=\(\sin^2x+\cos^4x\)
4. y=\(\sin^4x+\cos^4x+\sin x\times\cos x\)
Xét tính chẵn, lẻ của các hàm số sau:
a/ y=\(sin^2x\)
b/ y=\(\frac{\cot x}{\cos x}\)
c/ y=\(\frac{\tan x}{\sin x}\)
d/ y=\(1-\sin^2x\)
e/ y=\(|\cot x|.\sin^2x\)
tìm TXĐ
1.y=\(\frac{1}{\sin x}+\frac{1}{\cos x}\)
2.y=\(\sqrt{3-\sin x}\)
3.y=\(\sqrt{\frac{\sin^2x}{1+\sin x}}\)
4.y=\(\tan\left(2x-\frac{\Pi}{4}\right)\)
cm ham so tuan hoan tim T
a,=cot^2 x-1
b, y=sin(2x/5)*cos(2x/5)
c=y=1/sin x
d=y=sin2x+cos5x
cho hàm số y = f(x) = 2\(\sin\)2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + k\(\pi\)) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\).
c) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
Dựa vào đồ thị của hàm số \(y=\sin x\), hãy vẽ đồ thị của hàm số \(y=\left|\sin x\right|\) ?
từ đồ thị hàm số y = \(\sin x\) , hãy suy ra đồ thị các hàm số sau và vẽ các đồ thị các hàm số đó : a) y = \(-\sin x\) ; b) y = \(\left|\sin x\right|\) ; c) y = \(\sin\left|x\right|\)