Tìm TXĐ của hàm số: y=7sin(x-pi/5)/cos(x-pi) y=3-cot3x/ sin2x+1 y=cot(2x-pi/8)/(tanx-1)sin^2x
Xét tính chẵn, lẻ của các hàm số sau:
a/ y=\(sin^2x\)
b/ y=\(\frac{\cot x}{\cos x}\)
c/ y=\(\frac{\tan x}{\sin x}\)
d/ y=\(1-\sin^2x\)
e/ y=\(|\cot x|.\sin^2x\)
Bai 1 : Tim m de ham do sau xac dinh \(\forall x\in R\)
y=\(\sqrt{sin^4x+cos^4x-2msinxcosx}\)
Bai 2 Tim tap xac dinh cua ham so sau
a) y= \(\sqrt{2+tan^2x-cosx}\)
b) y=\(\sqrt{sin2x-sinx+3}\)
Xđ tính chẵn ,lẻ và tìm TXđ
1,y= cot.4.x
2.|cot .x|
3,y=1-sin 2.x
4,y= sin (x+pi /4) 5.y= x2.tan2x- cot.x 6.\(\dfrac{cos.2x}{1+sin^23.x}\) 7.y=\(\dfrac{sin.x+1}{cos.x}\) 8.y= 1+|cot .x + tan.x|Tính chu kỳ T của hàm số:
a) y = 1/ sin2x
b) y = -1/2sin( 100px + 50p)
c) y = cos3x + cos5x
d) y = tan3x + cotx
e) y = 2cos2 x + 2017
f) y = 2sin2x + 3cos23x
g) y = tan3x - cos22x
h) y = cot x/3 + sin2x
tìm GTLN và GTNN
1.y=\(3\sin^2x-2\)
2.y=\(2\sin^3x+\sin x\)
3.y=\(\cos^2x-2\sin x\)
4.y=\(\sin^2x+\cos^4x\)
5.y=\(\sin^4x+\cos^4x+\sin x\times\cos x\)
Tính GTLN - GTNN của hàm số:
a) y= 2sin2x + căn 3 sin2x
b) y= sin2x - 4sinx + 5
c) y= cos2x - cosx
d) y= sin4x - 2cos2x +1
Tìm tập xác định của các hàm số :
a) \(y=\sqrt{\cos x+1}\)
b) \(y=\dfrac{3}{\sin^2x-\cos^2x}\)
c) \(y=\dfrac{2}{\cos x-\cos3x}\)
d) \(y=\tan x+\cot x\)
Với những giá trị nào của x, ta có mỗi đẳng thức sau :
a) \(\dfrac{1}{\tan x}=\cot x\)
b) \(\dfrac{1}{1+\tan^2x}=\cos^2x\)
c) \(\dfrac{1}{\sin^2x}=1+\cot^2x\)
d) \(\tan x+\cot x=\dfrac{2}{\sin2x}\)