cho hàm số y = f(x) = 2\(\sin\)2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + k\(\pi\)) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2\(\sin\)2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\).
c) vẽ đồ thị của hàm số y = 2\(\sin\)2x .
cho hàm số y = f(x) = \(2\sin2x\) .
a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
b) vẽ đồ thị của hàm số y = \(2\sin2x\) .
cho hàm số y = f(x) = 2sin2x .
a) chứng minh rằng với số nguyên k tùy ý , luôn có f(x + kπ) = f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = 2sin2x trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
c) vẽ đồ thị của hàm số y = 2sin2x .
xét hàm số y = f(x) = \(\sin\pi x\)
a) chứng minh rằng vưới mọi số nguyên chẵn m ta có f(x+m)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số trên khoảng \(\left[-1;1\right]\)
c) vẽ đồ thị của hàm số đó
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) .
cho hàm số y = f(x) = \(2\sin2x\) .
a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
b) vẽ đồ thị của hàm số y = \(2\sin2x\) .
cho hàm số y = f(x) = \(2\sin2x\) .
a) lập bảng biến thiên của hàm số y = \(2\sin2x\) trên đoạn \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
b) vẽ đồ thị của hàm số y = \(2\sin2x\) .
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh ằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\).
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên \(k\) , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y =\(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y =\(\cos\frac{x}{2}\) .