Cho nửa đường tròn tâm O đường kính AB và C là điểm chính giữa của nửa đường tròn trên các tia AB và CD lần lượt lấy các điểm M và N sao cho cung CM = cung BN Chứng minh a, AM= CN
b, M N = AC = CB
Cho nửa (O) đường kính AB . Gọi C,D thuộc nửa đường tròn ( C thuộc cung AD) . AD cắt BC tại H , AC cắt BD tại E . Chứng minh EH vuông góc AB
Cho đường tròn tâm O. Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB, nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng :
a) Hai cung nhỏ CF và DB bằng nhau
b) Hai cung nhỏ BF và DE bằng nhau
c) DE = BF
Cho tam giác ABC. Trên tia đối của toa AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD. \(\left(H\in BC,K\in BD\right).\)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng minh rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau).
Trên dây cung AB của một đường tròn O, lấy hai điểm C và D chia dây này thành ba đoạn thẳng bằng nhau AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng :
a) Cung AE = Cung FB
b) Cung AE = Cung EF
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC
Cho hình thoi ABCD. Vẽ đường tròn tâm A, bán kính AD. Vẽ đường tròn tâm C, bán kính CB. Lấy điểm E bất kì trên đường tròn tâm A (không trùng với B bà D), điểm F trên đường tròn tâm C sao cho BF song song với DE
So sánh hai cung nhỏ DE và BF ?
Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K