a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)
a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC vuông tại A , biết AB=12cm , AC= 16cm kẻ AH vuông góc với BC ( H thuộc BC)
a. chứng minh tam giác ABC đồng dạng với tam giác HBA
b.tính BC, AH , HB
c. Kẻ đường phân giác BD , tính AD/CD
Cho ∆ABC vuông tại A đường cao AH . Kẻ HE vuông góc với AC , Gọi K là giao điểm của AH và EB a)EH //AB b)Chứng minh ∆CAH đồng dạng ∆CBA c) Qua K kẻ đường thẳng // AB cắt AC tại M và cắt BC tại N . Chứng minh KM =KN d) Chứng minh CK đi qua trung điểm của AB
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H ∈ BC).
a) Chứng minh : AABC dồng dạng với AHBA.
b) Lấy điểm M thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CM tại K. Chứng minh : CM.CK = CH.CB.
c) Tia BK cắt HA tại D. Chứng minh: BKH = BCD.
giúp mình câu c với ạ!
1/ Cho tam giác ABC vuông tại C , đường cao CH ( H thuộc AB ). Biết AH = 4cm , BH = 9cm
a/ Chứng minh Tam giác ABC đồng dạng tam giác CBH
b/ Chứng minh BC bình phương = BH . BA
c/ Tính diện tích Tam giác ABC
Cho tam giác ABC(AB<AC) có đường cao AH . Gọi I là trung điểm của AC .Kẻ IN vuông góc với BC(N thuộc BC) . a) Chứng minh tam giác ABC đồng dạng với tam giác NIC và CA.CI=CB.CN . b) Chúng minh AB2=BH.BC=NB2-NC2
cho tam giác abc vuông a, kẻ đường cao ah ab<ac. a,chứng minh tam giác abh đồng dạng tam giác cba .b,trên hc lấy hd=ha ,từ d vẽ đường thẳng song song với ah cắt ac tại e chứng minh ce.ca=cd.cb .c,chứng minh ae=ab
Cho tam giác ABC nhọn (AB<AC). Gọi AH là đường cao. Kẻ HM⊥AB tại M, HN⊥AC tại N.
a) Chứng minh ΔAHM đồng dạng ΔABH.
b) AH=8cm, B=6cm. Tính AM.
c) Trên tia đối tia NM lấy điểm E sao cho góc AEN= góc ACE. Chứng minh ΔAHE cân