a) Tam giác ABC vuông tại A có ^B+^C=90
Tam giác ABH vuông tại H có ^B+^BAH=90
=> ^BAH=^ACB
b)Xét tam giác ABH và Tam giác CAH có:
^AHB=^CAB
^BAH=^BCA(CM câu a)
=> tam giác ABH đồng dạng tam giác CAH
a) Tam giác ABC vuông tại A có ^B+^C=90
Tam giác ABH vuông tại H có ^B+^BAH=90
=> ^BAH=^ACB
b)Xét tam giác ABH và Tam giác CAH có:
^AHB=^CAB
^BAH=^BCA(CM câu a)
=> tam giác ABH đồng dạng tam giác CAH
cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH. Gọi M là trung điểm của AC, BM cắt AH tại I. vẽ AK vuông góc với BM tại K,
a) chứng minh : tam giác BHI đồng dạng với tam giác AKI và IB. IK = IA.IH
b) chứng minh: góc BAH = góc BKH
c) tia AK cắt BC tại D. Chứng minh: HD.KC = HK.DC
Cho tam giác ABC vuông tại A , AB = 15 cm ,AC = 20 cm . Kẻ đường cao AH ( H ϵ BC )
a) C/m ΔABC đồng dạng ΔHBA
b) Tính độ dài BC , AH ,BH ,CH
c) Vẽ đường phân giác AD của góc BAC . Tính BD , DC
Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
Cho tam giác ABC vuông tại A ( AB<AC) đường cao AH
a/ Chứng minh tam giác BHA đồng dạng tam giác BAC
b/ Vẽ BD là đường phân giác của góc tam giác ABC cắt AH tại K. Chứng minh : BA.BK = BD.BH
c/ Qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE = EC
Cho ∆ABC vuông tại A ( AB < AC) có đường cao AH.a/ Chứng minh: ∆HAC ∆ABC. Từ đó suy ra AH.AC = HC.ABb/ Vẽ tia phân giác góc ABC cắt AH, AC lần lượt tại E và D. Chứng minh : 𝐸H/ 𝐸A = DA /𝐷Cc/ Qua A vẽ đường thẳng vuông góc với BD tại I. Chứng minh : ∆BHI đồng dạng ∆BDC
cho tam giác abc vuông tại a gọi m là trung điểm của ac kẻ md vuông góc ab tại d
a) chứng minh adme là hình chữ nhật
b) kẻ ah vuông góc bc tại h chứng minh góc bah = góc ach
Cho tam giác ABC vuông tại A , AB = 12 cm AC =16 cm ,tia phân giác của góc A cắt cạnh BC tại D ,vẽ đường cao AH
b ,chứng minh AB x AC = BC x AH
Cho tam giác nhọn ABC (AB < AC), đường cao AD ( D thuộc BC). Từ D vẽ DH vuông góc với AC tại H thuộc AB, vẽ DI vuông góc với AB tại I thuộc AB. a, Chứng minh ∆AHD đồng dạng với ∆ADC. Từ đó suy ra AD(bình) = AC . AH b, Chứng minh DI(bình) = AI . BI c, Chứng minh góc AIH = góc DCH