góc AIM+góc AKM=180 độ
=>AIMK nội tiếp
góc AIM+góc AKM=180 độ
=>AIMK nội tiếp
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
a. Chứng minh CBKH là tứ giác nội tiếp.
b. Chứng minh góc ACM = góc ACK
c. Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
cho đường tròn (O;R) đường kính AB. Trên đường tròn (O) lấy hai điểm C và D nằm khác phía AB sao cho AC=AD. Trên cung nhỏ BC lấy điểm M (M khác B,C). Gọi I,K lần lượt là giao điển của CD với AB và AM chứng minh tứ giác IKMB nội tiếp
cho đường tròn tâm o bán kính r và một điểm A nằm ở ngoài đường tròn .qua A kẻ các tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm ) .gọi h giao điểm của AO và BC .cm ABOC là tứ giác nội tiếp
từ 1 điểm nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến AB, AC vs đường tròn BC là tiếp điểm trên cung nhỏ BC lấy điểm M vẽ MI vuông góc vs AB và MK vuông góc vs AC
a/ chứng minh AIMK nội tiếp đường tròn
b/ vẽ MP vuông góc vs BC . chứng minh góc MPK = MBC
B11:Từ 1 điểm A nằm ngoài đường tròn (O;R)ta vẽ hai tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm).Trên cung nhỏ BC lấy 1 điểm M,vẽ\(MI\perp AB,MK\perp AC\left(I\in AB,K\in AC\right)\)
a)Chứng minh:AIMK là tứ giác nội tiếp đường tròn.
b)Vẽ MP\(\perp\)BC(P\(\perp\)BC).Chứng minh: Góc MPK = Góc MBC
cho đường tròn O , từ điểm A ở ngoài đường tròn vẽ 2 tiếp tuyến AB ,AC ( B,C là các tiếp điểm ) . OA cắt BC tại H
A/ chứng minh tứ giác ABOC nội tiếp và OA vuông góc BC
B/ gọi M là trung điểm của BH . chứng thẳng qua M và vuông góc OM cắt các tia AB,AC theo thứ tự tại E , F . chứng minh góc OEM = góc OBM
C/ chứng minh F là trung điểm AC
thankkkkkkkkkkkkkkkkk
Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, đường thẳng MB cắt đường thẳng CH tại K. Chứng minh IK song song với AB
Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN
a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn
b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.
c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC). Chứng minh góc KME bằng góc KMF
d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF
e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.
Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.
cho nửa đường tròn tâm O đường kính AB. Lấy điểm C thuộc nửa đường tròn và điểm D nằm trên đoạn OA. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Đường thẳng qua C, vuông góc với CD cắt tiếp tuyến Ax, By lần lượt tại M và N
a, CM các tứ giác ADCM và BDCN nội tiếp đường tròn
b, CMR \(\widehat{MDN}=90^o\)
c, Gọi P là giao điểm của AC và DM, Q là giao điểm của BC và DN. CMR PQ // AB
ghi giả thiết và kết luận