a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\Rightarrow\Delta MAB\) cân tại M \(\Rightarrow OM\bot AB\)
Xét \(\Delta IAC\) và \(\Delta IBA:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)
\(\Rightarrow\Delta IAC\sim\Delta IBA\left(g-g\right)\Rightarrow\dfrac{IA}{IB}=\dfrac{IC}{IA}\Rightarrow IA^2=IB.IC\)
b) Vì \(IA=IM\Rightarrow IM^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)
Xét \(\Delta IMC\) và \(\Delta IBM:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)
\(\Rightarrow\Delta IMC\sim\Delta IBM\left(c-g-c\right)\Rightarrow\angle IMC=\angle IBM=\angle BDC\)