cho (o;r) đường kính AB . lấy C trên tuyến tại A của O sao cho AC bằng 2R. gọi D là giao điểm BC và O
a) c/m tam giác ABC cân
b) kẻ dây AF vuông OC tại H . c/m CE tiếp tuyến của (O;R)
Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K
Bài 1:Cho hv ABCD gọi O là tâm đường tròn đi qua 4 điểnm ABCD
a) Tính số đo góc ỏ tâm AOB và góc BOC
b) Tính số đo cung nhỏ AB, CD.
Bài 2: Cho điểm S nằm ngoài (O; R) kẻ tiếp tuyến SA (A là tiếp điểm ). SO cắt đường tròn tại B biết ÁD =35 độ . Tính số đo cung AB.
Bài 3: Hai tiếp tuyến của (O) tại A và B cắt nhau tại S biết ÁB =60 độ
a) Tính số đo cung lớn AB
b) Lấy điểm C bất kì thuộc cungnhor AB, vẽ tiếp tuyến của đường tròn tại C cắt SA tại D, cắt SB tại E. OD; OE cắt cung nhỏ AB tại I, K. Chứng tỏ số đo cung IK ko phụ thuộc vào vị trí điểm C
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng minh rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau).
Cho (O; R), đường kính AB. Vẽ dây CD vuông AB tại I và I là trung điểm OA.
a/ Ch/m OCAD là hình thoi
b/ Gọi M là trung điểm BC. Ch/m 3 điểm D, O, M thẳng hàng.
Cho nửa đường tròn tâm O, đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A,B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Biết CD=a và BD= 3AC
a) CMR: OC và OD vuông góc
b) Tính tỉ số AC^2+BD^2/ CD^2
c) Tính theo a diện tích tứ giác ACDB
Cho đường tròn (O). Gọi I là điểm chính giữa của cung AB (không phải là cung nửa đường tròn) và H là trung điểm của dây AB. Chứng minh rằng đường thẳng IH đi qua tâm O của đường tròn ?
cho tam giác ABC nội tiếp đường tròn tâm O . tia phận giác của các góc A , B , C cắt nhau tại I và cắt đường tròn tại các điểm D , E , F
a, CI vuông góc với DE
b, DI = DB = DC
c , gọi M là giao AC và DE . CMR IM // BC
d, CMR : A là tâm đường tròn bàn tiếp tam giác ADC
Cho đường tròn (O; R). Qua điểm A thuộc đường tròn, kẻ tiếp tuyến Ax, trên đó lấy điểm B sao cho \(OB=\sqrt{2}R\), OB cắt đường tròn (O) ở C.
a) Tính số đo góc ở tâm tạo bởi hai bán kính OA, OC;
b) Tính số đo các cung AC của đường tròn (O).