Câu 5: Từ điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Gọi H là giao điểm của OA và BC.Gọi I là trung điểm AH, BỊ cắt đường tròn tại F.
Chứng minh: Ba điểm D, H, F thẳng hàng.
Từ điểm A nằm ngoài đường tròn (O) vẽ 2 tiếp tuyến AM, AN. Qua A kẻ đường thẳng vuông góc với AM cắt ON tại S. Kẻ OE vuông góc SA tại E. Tia EN cắt đường tròn (O) tại điểm thứ 2 là B. Gọi I là giao điểm của MN và OA, H là giao điểm của OE và AN. Chứng minh: a. SA = SO b. SH vuông góc OA c. BN song song OA
cho đường tròn (O,R) đường kính BC . vẽ đường thẳng d là tiếp tuyến tại B của đường tròn (O). Trên đường thẳng d, lây ddiiemr A sao cho AB>OB. Từ điểm A vẽ tiếp tuyến thứ hai với (O),tiếp điểm I .a) C/M AB vuông góc BC và BI vuông góc với OA b)qua điểm I vẽ đường thẳng vuông góc với BC tại H-C/M tam giác IBC là tam giác vuông và IBbình=BH.BC c)vẽ tiếp tuyến tại C của đường tròn (O)cắt AI tại D d)chứng minh rằng BC bình =4.AB.CD
53.Cho tam giác ABC cân tại A.Gọi O là trung điểm BC.Vẽ OH,OK lần lượt vuông góc với AB,AC(Hϵ AB,Kϵ AC).
a)C/m AH,AK là các tiếp tuyến của đường tròn (O;OH).
b)Gọi I là 1 điểm trên cung nhỏ HK của đường tròn (O).Vẽ tiếp tuyến đường tròn (O) tại I cắt AB,AC lần lượt tại M,N.C/m chu vi tam giác AMN=AH+AK.
c)C/m góc MON=góc B=góc C.
d)C/m các tam giác BMO,OMN,CON đồng dạng vs nhau.
Cho điểm A ở ngoài (O). Kẻ hai tiếp tuyến AB, AC tới (O). Kẻ tia Ax nằm giữa hai tia AB và AO, tia này cắt (O) tại M và N sao cho M nằm giữa A và N; gọi E là trung điểm của MN. I là giao điểm thứ hai của CE với (O). Chứng minh: a) Tứ giác AEOC nội tiếp; tứ giác ABOC nội tiếp. b) Góc AEC bằng góc AOC. c) Góc AEC bằng góc ABC. d) Chứng minh BI // MN
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC.
a) Chứng minh tam giác ABC cân.
b) Chứng minh OA vuông góc với BC.
c) Tính độ dài BI, biết OB = 6 cm; OA = 8 cm. d) Chứng minh rằng : AB 2 – OC 2 = AI 2 – IO2
Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME