Bài 6. Vectơ trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Trong Ví dụ 8, gọi I là điểm thuộc đoạn thẳng AG sao cho \(\overrightarrow {AI}  = 3\overrightarrow {IG} \) (H.2.19). Chứng minh rằng \(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow 0 \).

Theo ví dụ 8 ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD}  = 3\overrightarrow {AG} \)\( \Rightarrow \overrightarrow {AI}  + \overrightarrow {IB}  + \overrightarrow {AI}  + \overrightarrow {IC}  + \overrightarrow {AI}  + \overrightarrow {ID}  = 3\overrightarrow {AG} \)

\( \Rightarrow \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = 3\overrightarrow {AG}  - 3\overrightarrow {AI}  = 3\left( {\overrightarrow {AG}  + \overrightarrow {IA} } \right) = 3\overrightarrow {IG}  = \overrightarrow {AI} \)\( \Rightarrow \overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow 0 \)