Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\) nội tiếp trong đường tròn (O), ngoại tiếp đường tròn (I). Cung nhỏ BC có M là điểm chính giữa. N là trung điểm của cạnh BC. Điểm E đối xứng với I qua N. Đường thẳng ME cắt đường tròn (O) tại điểm thứ hai là Q. Lấy điểm K thuộc BQ sao cho QK=QA. Chứng minh:
a) Điểm Q thuộc cung nhỏ AC của đường tròn (O)
b)Tứ giác AIKB nội tiếp và BQ=AQ+CQ
Cho tam giác ABC có cả ba góc đều nhọn và 30o = \(\widehat{C}\) < \(\widehat{A}\). Đường tròn tâm I nội tiếp tam giác tiếp xúc với AB, BC, CA lần lượt tại M, N, E. Gọi K là giao điểm của BI và NE.
1) Chứng minh 5 điểm A, M, I, K, E cùng thuộc một đường tròn.
2) Gọi T là giao điểm của BI và AC, chứng minh: KT.BN = KB.ET
3) Đặt \(\widehat{BIC}\) = 2α. Tính cos α ?
4) Cho biết CA = CB = 6cm, tính diện tích tam giác ABC?
1 . Cho a,b,c thực dương t.m: a+b+c=2
CMR: \(P=\frac{ab}{\sqrt{\left(ab+2c\right)}}+\frac{bc}{\sqrt{\left(bc+2a\right)}}+\frac{ca}{\sqrt{\left(ca+2b\right)}}\le1\)
2 . Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh
a ) \(\widehat{AOB}=90^0+\frac{\widehat{ACB}}{2}\)
b )
b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn
c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET
Cho tam giác ABC cân tại A (AB = AC với \(\widehat{BAC}=20^o\)) ,trên cạnh AC lấy điểm D sao cho \(\widehat{DBC}=50^o\), trên cạnh AB lấy điểm E sao cho \(\widehat{ECB}=60^o\), số đo \(\widehat{DEC}=...\)
Cho tam giác vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Vẽ đường tròn (A;AH). Từ B và c kẻ tiếp BM và CN đến (A;AH) (M, N là cá tiếp điểm, không nằm trên BC). Gọi K là giao điểm của HN và AC
a) Chứng minh 4 điểm A,H,C,N thuộc cùng một dường tròn, đường kính AC
b) Chứng minh BM+CN=BC
c) Chứng minh M,A,N thẳng hàng
d) Nối MC cắt ( A;AH) tại P (\(P\ne M\)). Chứng minh \(\widehat{PKC}\) = \(\widehat{AMC}\)
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
Một số bài toán áp dụng định lý Ceva,Menelaus và Ptoleme:
1. Trên các cạnh BC,CA,AB của ΔABC lần lượt lấy các điểm \(A_1,B_1,C_1\) sao cho \(AA_1,BB_1,CC_1\) đồng quy tại O. Đường thẳng qua O song song với AC cắt \(A_1B_1,B_1C_1\) tương ứng tại K,M. Cmr: OM=OK
2.Cho 2 đường tròn (O) và (O') cắt nhau tại A và B sao cho OA⊥OA. OO' cắt 2 đg tròn tại C,D,E,F sao cho các điểm C,O,E,D,O',F nằm trên 1 đg thẳng theo thứ tự đó. BE cắt (O) tại điểm thứ 2 là K cà cắt CA tại M. BD cắt (O') tại điểm thứ 2 là L và cắt AF tại N. Cm: \(\frac{KE}{KM}\cdot\frac{LN}{LD}=\frac{O'E}{OD}\)
3. Gọi M,N là các điểm bên trog ΔABC sao cho \(\widehat{MAB}=\widehat{NAC};\widehat{MBA}=\widehat{NBC}\). Cm: \(\frac{AM\cdot AN}{AC\cdot AC}+\frac{BM\cdot BN}{AB\cdot BC}+\frac{CM\cdot CN}{CA\cdot BC}=1\)