Đường tròn có pt:
\(\left(x-1\right)^2+\left(y-1\right)^2=8\)
Tâm \(I\left(1;1\right)\) và \(R=2\sqrt{2}\)
Gọi \(I_1\) là ảnh của I qua phép quay
\(\Rightarrow\left\{{}\begin{matrix}x_{I1}=1.cos\left(-45^0\right)-1sin\left(-45^0\right)=\sqrt{2}\\y_{I_1}=1.sin\left(-45^0\right)+1.cos\left(-45^0\right)=0\end{matrix}\right.\)
\(\Rightarrow I_1\left(\sqrt{2};0\right)\)
Gọi \(I_2\) là ảnh của \(I_1\) qua phép vị tự:
\(\Rightarrow\left\{{}\begin{matrix}x_{I_2}=-\sqrt{2}.\sqrt{2}=-2\\y_{I_2}=-\sqrt{2}.0=0\end{matrix}\right.\) \(\Rightarrow I_2\left(-2;0\right)\)
\(R_2=\left|-\sqrt{2}\right|.2\sqrt{2}=4\)
Vậy pt đường tròn ảnh có dạng:
\(\left(x+2\right)^2+y^2=16\)