Tâm I (1;-1)
vecto IA(-3;4)
=> IA = R =\(\sqrt{3^2+4^2}=5\)
=>pt: \(\left(x-1\right)^2+\left(y+1\right)^2=25\)
Gọi phương trình đường tròn \(\left(C\right):\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
Gọi \(I\) là trung điểm \(AB\)
\(\Rightarrow I\left(1;-1\right)\), đồng thời \(I\) cũng là tâm đường tròn \(\left(C\right)\)
\(R=IA=\sqrt{\left(1+2\right)^2+\left(-1-3\right)^2}=5\)
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y+1\right)^2=25\)