Gọi P là trung điểm AH, Q là trung điểm DH \(\Rightarrow\) PQ là đường trung bình tam giác ADH \(\Rightarrow\left\{{}\begin{matrix}PQ//AD\\PQ=\frac{1}{2}AD\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}PQ//BM\\PQ=BM\end{matrix}\right.\)
\(\Rightarrow PQMB\) là hbh \(\Rightarrow BP//MQ\)
Mặt khác \(PQ//AD\Rightarrow PQ\perp AB\Rightarrow\) P là trực tâm tam giác ABQ
\(\Rightarrow BP\perp AQ\Rightarrow MQ\perp AQ\) (với AQ là trung tuyến kẻ từ A của ADH)
\(\Rightarrow\) Đường thẳng MQ nhận \(\left(1;-7\right)\) là 1 vtpt
Phương trình MQ: \(1\left(x+1\right)-7y=0\Leftrightarrow x-7y+1=0\)
Q là giao AQ và MQ nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-7y+1=0\\7x+y-3=0\end{matrix}\right.\) \(\Rightarrow Q\left(\frac{2}{5};\frac{1}{5}\right)\)
Q là trung điểm DH \(\Rightarrow D\left(2;-1\right)\)