- Xét phương trình hoành độ giao điểm : \(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-2x+1-4=\left(x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy P giao với đường thẳng tại 2 điểm trong mptđ .
Phương trình hoành độ giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là:
\(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: Số giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là 2 giao điểm