Bài 11: Tích vô hướng của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) trong mỗi trường hợp sau:

a) \(\overrightarrow a  = ( - 3;1),\;\overrightarrow b  = (2;6)\)

b) \(\overrightarrow a  = (3;1),\;\overrightarrow b  = (2;4)\)

c) \(\overrightarrow a  = ( - \sqrt 2 ;1),\;\overrightarrow b  = (2; - \sqrt 2 )\)

Hà Quang Minh
24 tháng 9 2023 lúc 20:35

a) 

\(\overrightarrow a .\overrightarrow b  = ( - 3).2 + 1.6 = 0\)

\( \Rightarrow \overrightarrow a  \bot \overrightarrow b \) hay \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\).

b)

\(\left\{ \begin{array}{l}\overrightarrow a .\overrightarrow b  = 3.2 + 1.4 = 10\\|\overrightarrow a |\, = \sqrt {{3^2} + {1^2}}  = \sqrt {10} ;\;\,|\overrightarrow b |\, = \sqrt {{2^2} + {4^2}}  = 2\sqrt 5 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^o}\end{array}\)

c) Dễ thấy: \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương do \(\frac{{ - \sqrt 2 }}{2} = \frac{1}{{ - \sqrt 2 }}\)

Hơn nữa: \(\overrightarrow b  = \left( {2; - \sqrt 2 } \right) =  - \sqrt 2 .\left( { - \sqrt 2 ;1} \right) =  - \sqrt 2 .\overrightarrow a \;\); \( - \sqrt 2  < 0\)

Do đó: \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng.

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\)

Chú ý:

Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:

+  \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\): nếu \(\overrightarrow a .\overrightarrow b  = 0\)

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương: 

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {0^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng

Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết