Viết phương trình chính tắc của elip (E) có hai tiêu điểm là \(F_1\) và \(F_2\) biết :
a) (E) đi qua hai điểm \(M\left(4;\dfrac{9}{5}\right)\) và \(N\left(3;\dfrac{12}{5}\right)\)
b) (E) đi qua \(M\left(\dfrac{3}{\sqrt{5}};\dfrac{4}{\sqrt{5}}\right)\) và tam giác \(MF_1F_2\) vuông tại M
Cho (E): x^2/4 + y^2/1 = 1 và điểm C (2; 0). Tìm tọa độ các điểm A và B thuộc (E) sao cho tam giác ABC là tam giác đều
cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)
Xác định độ dài các trục, tọa độ các tiêu điểm, tọa độ các đỉnh của các elip có phương trình sau :
a) \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)
b) \(4x^2+9y^2=1\)
c) \(4x^2+9y^2=36\)
Cho elip (E) : \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\left(0< b< a\right)\). Tính tỉ số \(\dfrac{c}{a}\) trong các trường hợp sau :
a) Trục lớn bằng ba lần trục nhỏ
b) Đỉnh trên trục nhỏ nhìn hai tiêu điểm dưới một góc vuông
c) Khoảng cách giữa đỉnh trên trục nhỏ và đỉnh trên trục lớn bằng tiêu cự
Cho (E): x2 + 2y2 = 8
Và (d): x-√2y + 2=0
(E) giao (d) tại hai điểm phân biệt B và C. Tìm điểm A thuộc (E) sao cho diện tích tam giác ABC lớn nhất?
lập phương trình chính tắc của elip
biết độ dài trục lớn là 6, đi qua \(M\left(\dfrac{3\sqrt{2}}{2},\sqrt{2}\right)\) và M thuộc \(\left(E\right)\) cách O một khoảng \(\dfrac{\sqrt{26}}{2}\)
cho elip\(\dfrac{x^{2^{ }}}{25}+\dfrac{y^2}{9}=1\), đường thẳng đi qua một tiêu điểm của elip và vuông góc với trục hoành cắt elip tại A và B. Tính độ dài đoạn AB?
Lập phương trình chính tắc của elip trong các trường hợp sau :
a) Elip đi qua các điểm \(M\left(0;3\right)\) và \(N\left(3;-\dfrac{12}{5}\right)\)
b) Elip có một tiêu điểm \(F_1\left(-\sqrt{3};0\right)\) và điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\) nằm trên elip