Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nana

Trong mặt phẳng tọa độ Oxy cho đường tròn (T) có phương trình: \(x^2+y^2-4x-2y-4=0\)

a) Tìm tọa độ tâm và tính bán kính của đường tròn (T)

b) Với giá trị bào của b thì đường thẳng y=x+b có điểm chung với đường tròn (T)

c) Phương trình tiếp tuyến của đường tròn (T) sao cho tiếp tuyến này song song với đường phân giác của góc x'Oy, trong đó Ox' là tia đối của tia Ox

Nguyễn Việt Lâm
23 tháng 6 2020 lúc 6:23

Đường tròn tâm \(I\left(2;1\right)\) bán kính \(R=3\)

\(y=x+b\Leftrightarrow x-y+b=0\)

Để d có điểm chung với (T) \(\Leftrightarrow d\left(I;d\right)\le R\)

\(\Leftrightarrow\frac{\left|2.1-1+b\right|}{\sqrt{1^2+\left(-1\right)^2}}\le3\Leftrightarrow\left|b+1\right|\le3\sqrt{2}\)

\(\Rightarrow-1-3\sqrt{2}\le b\le-1+3\sqrt{2}\)

c/ Phân góc góc x'Oy có pt: \(y=-x\Leftrightarrow x+y=0\)

Tiếp tuyến d' song song phân giác nên pt có dạng: \(x+y+c=0\) (với \(c\ne0\))

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|2+1+c\right|}{\sqrt{1^2+1^2}}=3\Leftrightarrow\left|c+3\right|=3\sqrt{2}\) \(\Rightarrow\left[{}\begin{matrix}c=-3+3\sqrt{2}\\c=-3-3\sqrt{2}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x+y-3+3\sqrt{2}=0\\x+y-3-3\sqrt{2}=0\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Hồng Na
Xem chi tiết
Võ Hồng Kim Thoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
G.Dr
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Võ Hồng Kim Thoa
Xem chi tiết
Phí Minh Hạnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết