Trong mặt phẳng Oxy cho điểm M(3;5) , đường thẳng d:3x+2y-4=0 và đường tròn c:x^2+y^2-2x+4y-4=0
a. Tìm ảnh của điểm M và đường thẳng d qua phép tịnh tiến theo vectơ = (2;1)
b. Tìm ảnh của đường tròn (C) qua phép quay tâm O góc quay 90 độ (O là gốc tọa độ).
Trong mp tọa độ Oxy cho vecto v(3,4) và đường thẳng d:x+y-6=0.Tìm ảnh của đường thẳng d qua phép tịnh tiến T vecto v
Bài 1: Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+2t\\y=-1-t\end{matrix}\right.\) và đường thẳng \(\Delta': x+2y-1=0\).Tìm tọa độ véctơ \(\overrightarrow{v}=(1;a)\) biết \(T_\overrightarrow{v}(\Delta)=\Delta'\)
Bài 2: Trong mặt phẳng tọa độ Oxy, cho 2 đường thẳng \(d:2x-3y+3=0\)và \(d_1:2x-3y-5=0\).Tìm tọa độ \(\overrightarrow{w}=(a;b)\) có phương vuông góc với đường thẳng \(d \) để \(d_1\) là ảnh của \(d \) qua tịnh tiến \(T_\overrightarrow{w}\).Khi đó \(a+b\) bằng bao nhiêu.
Trong mặt phẳng tọa độ Oxy, phép tịnh tiến biến đường thẳng d : x+y+1=0 thành đường thẳng d': x+y-1=0 theo vecto cùng phương với vecto \(i^{\rightarrow}\) . Hãy tìm vecto tịnh tiến .
Cho mặt phẳng tọa độ Oxy cho 4 điểm A(-1;2) B(3;-4) C(0;-5) D(-6;7)
a) tìm ảnh A, B, C, D qua phép tịnh tiến thao vecto v=(-2;1)
b) Tìm E, F sao cho TAB(E)=C ; TDC (F)=D
c) gọi I là trung điểm của AB. Tìm G sao cho I là ảnh của G qua phép tịnh tiến theo vecto DC
Trong mặt phẳng tọa độ Oxy , tìm phương trình đường thẳng ∆' là ảnh của đường thẳng ∆: x+2y-1=0 qua phép tịnh tiến theo vecto v(1;-1)
Trong mặt phẳng tọa độ Oxy, cho 2 đường thẳng d: 2x - 3y + 3 = 0 và d': 2x - 3y - 5 = 0. Tìm tọa độ \(\overrightarrow{v}\) có phương vuông góc với d để \(T_{\overrightarrow{v}}=d'\).
Trong mặt phẳng Oxy, cho điểm M(-3,2), đường thẳng d: x - 3y + 5 = 0, vectơ v = (1,3). Tìm ảnh của d qua phép tịnh tiến theo vectơ v.
trong mặt phẳng oxy cho đường thẳng d có phương trình 2x-y+1=0 . tìm vectơ v để biến đường thẳng d thành chính nó