Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC cân tại A có BC=\(4\sqrt{2}\), các đường thẳng AB và AC lần lượt đi qua các điểm M(1,-5/3) và N(0,18/7). Xác định tọa độ các đỉnh của tam giác ABC, biết đường cao AH có pt x+y-2=0 và điểm B có hoành độ dương.
Help meee!!!
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC đỉnh A (-1;3), đường cao BH thuộc đường thẳng y=x. Phân giác trong góc C có phương trình: x+3y+2=0. Viết phương trình cạnh BC.
Trong mặt phẳng hệ toạ độ Oxy. Cho tam giác ABC có đỉnh C(-5,-6) và đường cao AH: x+2y+1=0, đường trung tuyến BM : 8x-y+4=0. Tìm toạ độ các đỉnh A,B Các bạn giúp mình nhanh với
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B, BC = 2BA. Gọi E,F lần lượt là trung điểm của BC,AC. Trên tia đối của tia FE lấy điểm M sao cho FM = 3FE. Biết điểm M (5;-1), đường thẳng AC có phương trình 2x + y - 3 = 0, điểm A có hoành độ là số nguyên. Xác định tọa độ các đỉnh của tam giác ABC.
trong mặt phìnhẳng với hệ tọa độ Oxy , cho tam giác ABC cân tại A cạnh đáy BC có phương trình x+y+1=0(d1).phương trình đường cao kẻ từ B là d2 : x-2y-2=0.điểm M(2:1) thuộc đương cao vẽ từ đỉnh C .Viết phương trình các cạnh bên của tam giác ABC
Trong mặt phẳng của hệ tọa độ Oxy , cho tam giác ABC có AB = AC , \(\widehat{BAC}\) = 90 độ . Biết M(1 ; -1 ) là trung điểm của cạnh BC và G ( \(\dfrac{2}{3}\) ; 0 ) là trọng tâm tam giác ABC . Khi đó , A ( xa ; yb ) , B ( xa ; yb ) (xb < 0 ) . Tính 2019 x2A + y A + 2xB - 3yB.
Cho tam giác ABC có đỉnh A(1;3) và 2 trung tuyến có phương trình x-2y+1=0, y=1. Lập phương trình các cạnh của tam giác ABC
Trong mặt phẳng với hệ tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1,0), chân đường cao hạ từ đỉnh B là K(0,2), trung điểm cạnh AB là M(3,1)
Câu 60: Trong mặt phẳng Oxy, cho tam giác ABC có phương trình cạnh AB là x - y - 2 = 0 , phương trình đường thẳng chứa cạnh AC là x + 2y - 5 = 0 . Biết trọng tâm của tam giác là điểm G(3; 2) và phương trình đường thẳng chứa cạnh BC có dạng mx + ny + 7 = 0 . Giá trị của biểu thức T = m - n là ...