Bài tập cuối chương V

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Trong mặt phẳng, cho hai đường thẳng song song a và b. Cho 3 điểm phân biệt trên đường thẳng a và 4 điểm phân biệt trên đường thẳng b. Có bao nhiêu tam giác có cả 3 đỉnh là 3 điểm trong 7 điểm nói trên?

Hà Quang Minh
28 tháng 9 2023 lúc 21:02

Cách 1:

TH1: 2 điểm thuộc a và 1 điểm thuộc b

Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)

TH2: 2 điểm thuộc b và 1 điểm thuộc a

Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)

Vậy có tất cả 12 + 18 = 30 tam giác.

Cách 2:

Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)

Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)

Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)

Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)

Vậy số tam giác có thể có là : 30 (tam giác)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết