1cho ba điểm A(5:-2:0),B(-2:3:0) và C(0;2;3). Diện tích tam giác là
2 trong khong gian hệ tọa độ oxyz cho \(\overline{u}\left(1;0;2\right),\overline{v}\left(0;1;-2\right)\) . Tích vô hướng của \(\overline{u}\) và là
3 tìm trên trục tung tất cả các điểm các đều hai điểm A(1;-3-7) và B (5;7;-5)
4 trong không gain oxyz cho điểm I (1;1;-1) và mặt phẳng (P) :2x-3y+z+5=0 . Phương trình của mặt cầu tâm I và tiếp xúc với mp (p) là
5 trong hệ tọa độ OXYZ , viết pt mặt cầu tâm I(2;4;-1) và qua A(5;2;3)
6 thể tích khối câu pt (x-1)^2+(y-2)^2 +(z-3)^2=4 là
7 tìm tọa độ tâm I và kính R của mặt cầu(s) :x^2+y^2+z^2-8z+10y-6z+49=0
8 pt mặt phẳng đi qua A(1;2;4) Va nhận \(\overline{n}\) =(2;3;5) la vecto pháp tuyến là
giúp mình vói nha
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \(x^2+y^2+z^2-2x+6y-8z-10=0\) và mặt phẳng (P): \(x+2y-2z=0\). Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S).
Trong không gian Oxyz cho I(3; 1;-1) và M(1; 4;2). Mặt phẳng (P) qua M và tiếp xúc với mặt cầu tâm I bán kính IM. Phương trình (P) là:
A. 2x-3y-3z+16=0. B. -2x + 3y + 3z +16 = 0. C. 3x + y – z -5 =0. D. x+4y+z-18=0.
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(2;0;0) và B(1;1;-1). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm 0, tiếp xúc với (P)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d): (x-2)/1=y/1=z/-1 và mặt cầu (S): x2+(y-1)2+(z+1)2=1. Hai mặt phẳng (P), (P') chứa d và tiếp xúc (S) tại T và T'. Tìm tọa độ trung điểm H của TT'
Với mọi giá trị m thuộc [-1,1], mp (P): 3mx+5căn(1-m^2)y+4mz + 20=0 luôn tiếp xúc với 1 mặt cầu cố định. Tìm R của mc đó.
Trong không gian với hệ trục tọa độ Oxyz,qua 2 điểm M(1;-1;1) và N(0;-1;0) lập phương trình mặt phẳng \(\alpha\) cắt mặt cầu \(\left(S\right)\left(x+2\right)^2+\left(y+1\right)^2+\left(z-1\right)^2=5\) một thiết diện đường tròn mà diện tích hình tròn sinh bởi đường tròn có diện tích \(S=\pi\)
Trong không gian với hệ toạ độ Oxyz , cho mặt cầu (S):x²+y²+z²-4mx+4y+2mz+m²+4m=0 có bán kính nhỏ nhất khi m bằng
A.1/2
B.1/3
C.√3/2
D.0