Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lưu hương

1cho ba điểm A(5:-2:0),B(-2:3:0) và C(0;2;3). Diện tích tam giác là

2 trong khong gian hệ tọa độ oxyz cho \(\overline{u}\left(1;0;2\right),\overline{v}\left(0;1;-2\right)\) . Tích vô hướng của \(\overline{u}\) và là

3 tìm trên trục tung tất cả các điểm các đều hai điểm A(1;-3-7) và B (5;7;-5)

4 trong không gain oxyz cho điểm I (1;1;-1) và mặt phẳng (P) :2x-3y+z+5=0 . Phương trình của mặt cầu tâm I và tiếp xúc với mp (p) là

5 trong hệ tọa độ OXYZ , viết pt mặt cầu tâm I(2;4;-1) và qua A(5;2;3)

6 thể tích khối câu pt (x-1)^2+(y-2)^2 +(z-3)^2=4 là

7 tìm tọa độ tâm I và kính R của mặt cầu(s) :x^2+y^2+z^2-8z+10y-6z+49=0

8 pt mặt phẳng đi qua A(1;2;4) Va nhận \(\overline{n}\) =(2;3;5) la vecto pháp tuyến là

giúp mình vói nha

Nguyễn Việt Lâm
5 tháng 5 2020 lúc 22:32

1.

\(\overrightarrow{AB}=\left(-7;5;0\right)\) ; \(\overrightarrow{AC}=\left(-5;4;3\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(15;21;-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=\sqrt{15^2+21^2+3^2}=\frac{15\sqrt{3}}{2}\)

2.

\(\overrightarrow{u}.\overrightarrow{v}=1.0+0.1+2.\left(-2\right)=-4\)

3.

Gọi \(M\left(0;m;0\right)\) là điểm thuộc trục tung

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+3;7\right)\\\overrightarrow{BM}=\left(-5;m-7;5\right)\end{matrix}\right.\)

\(AM=BM\Leftrightarrow1^2+\left(m+3\right)^2+7^2=5^2+\left(m-7\right)^2+5^2\)

\(\Leftrightarrow6m+59=-14m+99\Rightarrow m=2\Rightarrow M\left(0;2;0\right)\)

4.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|2-3-1+5\right|}{\sqrt{2^2+3^2+1^2}}=\frac{3}{\sqrt{14}}\)

Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=\frac{9}{14}\)

5.

\(\overrightarrow{IA}=\left(3;-2;4\right)\Rightarrow R=IA=\sqrt{3^2+2^2+4^2}=\sqrt{29}\)

Pt mặt cầu: \(\left(x-2\right)^2+\left(y-4\right)^2+\left(z+1\right)^2=29\)

Nguyễn Việt Lâm
5 tháng 5 2020 lúc 22:35

6.

Mặt cầu bán kính \(R=2\)

Thể tích: \(V=\frac{4}{3}\pi R^3=\frac{32\pi}{3}\)

7.

Chắc bạn ghi nhầm, pt có lý là: \(x^2+y^2+z^2-8x+10y-6z+49=0\)

Tọa độ tâm \(I\left(4;-5;3\right)\)

Bán kính: \(R=\sqrt{4^2+5^2+3^2-49}=1\)

8.

Phương trình mặt phẳng:

\(2\left(x-1\right)+3\left(y-2\right)+5\left(z-4\right)=0\)

\(\Leftrightarrow2x+3y+5z-28=0\)


Các câu hỏi tương tự
Dương Việt Anh
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
Luân Trần
Xem chi tiết
Nguyễn Trần Thanh Tâm
Xem chi tiết
Phước Lộc
Xem chi tiết
Minh Đức
Xem chi tiết
AllesKlar
Xem chi tiết
Bùi Thục Quyên
Xem chi tiết
25. Pham Tuan Thanh
Xem chi tiết