Quỹ tích d là hình trụ dài vô tận có trục là Oz và bán kính \(R=3\)
Khoảng cách từ A đến d là lớn nhất khi d đi qua giao điểm của đường thẳng d' và trụ, trong đó d' qua A, cắt đồng thời vuông góc Oz
\(\Rightarrow\) A đúng
Quỹ tích d là hình trụ dài vô tận có trục là Oz và bán kính \(R=3\)
Khoảng cách từ A đến d là lớn nhất khi d đi qua giao điểm của đường thẳng d' và trụ, trong đó d' qua A, cắt đồng thời vuông góc Oz
\(\Rightarrow\) A đúng
Cho mp (P): 3x – y – z + 2 = 0
a) Cho điểm C(-3; 2; 4). Tính d(C; (P))
b) Tìm điểm M thuộc Ox sao cho khoảng cách từ M đến O và đến mp(P) là bằng nhau
c) Viết pt mp (Q) song song với (P) và (Q) cách A(-1; 3;2) một khoảng bằng 5
d) Viết pt mp (Q) song song với (P) và (Q) cách B(0; 1; -4) một khoảng bằng khoảng cách từ B đến mp(P)
e) Viết pt mp(P) song song và cách mp(Q) một khoảng bằng 3
f) Cho (P1): 6x – 2y – 2z +9. Tính khoảng cách giữa (P) và (P1)
g) Cho (P2): 3x – y – z – 10 = 0. Viết pt mp song song và cách đều (P) và (P2)
Trong không gian Oxyz cho A(1;2;-1) và B(1;-2;2). Mặt phẳng (P) ax +4y + cz + d = 0 qua A và cách B một khoảng bằng 5. Tính a + c + d bằng
A. -3. B. 3. C. -14. D. 4.
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y-2}{2}=\dfrac{z}{1}\) và hai điểm \(A\left(1;-1;1\right)\), \(B\left(4;2;-2\right)\). Gọi Δ là đường thẳng đi qua \(A\) và vuông góc với \(d\) sao cho khoảng cách từ điểm \(B\) đến Δ là nhỏ nhất. Phương trình đường thẳng Δ là:
A. \(\dfrac{x-1}{-1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\) B. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\)
C. \(\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-1}{4}\) D. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{-4}\)
Trong không gian với hệ trục toạ độ Oxyz cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z-1}{1}\) và mặt cầu \(\left(S\right):\left(x-4\right)^2+\left(y-5\right)^2+\left(z-7\right)^2=2\). Hai điểm A và B thay đổi trên (S) sao cho tiếp diện của (S) tại A và B vuông góc với nhau. Đường thẳng qua A song song với d cắt (Oxy) tại M, đường thẳng qua B song song với d cắt (Oxy) tại N. Tìm giá trị lớn nhất của tổng \(AM+BN=?\)
A. \(8\sqrt{6}\)
B. \(\sqrt{20}\)
C. \(16\sqrt{6}\)
D. \(7\sqrt{6}+5\sqrt{3}\)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ( 1;1;1) B(2,1,0) C(2,0,2). Gọi P là mp chứa BC và cách A một khoảng lớn nhất. Tìm vecto pháp tuyến của (P)
Trong không gian với hệ tọa độ Oxyz, cho m , n là hai số thực dương thỏa mãn \(m+2n=1\). Gọi A , B , C lần lượt là giao điểm của mặt phẳng \(\left(P\right):mx+ny+mnz-mn=0\) với các trục tọa độ Ox, Oy, Oz. Khi mặt cầu ngoại tiếp tứ diện OABC có bán kính nhỏ nhất thì \(2m+n\) có giá trị bằng:
A. \(\frac{3}{5}\)
B. \(\frac{4}{5}\)
C. \(\frac{2}{5}\)
D. 1
Cho A(1;0;-2), B(2;1;3) và (P): 2x-2y+z-7=0. Gọi vecto u(1;b;c) là VTCP của đường thẳng D qua B, song song (P) sao cho khoảng cách từ A đến D nhỏ nhất. Tính S+b+2c
A. -5 B. 5 C.3 D. -3
trong không gian Oxyz, cho hai điểm A(-2;2;-2), B(3;-3;3). Điểm M trong không gian thỏa mãn \(\dfrac{MA}{MB}=\dfrac{2}{3}\). Khi đó độ dài OM lớn nhất bằng:
A.6√3 B. 12√3 C. \(\dfrac{5\sqrt{3}}{2}\) D. 5√3
Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right):\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=48\) và đường thẳng \(\left(d\right):\dfrac{x+1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{\sqrt{2}}\) . Điểm \(M\left(a;b;c\right)\left(a>0\right)\) nằm trên đường thẳng \(\left(d\right)\) sao cho từ \(M\) kẻ được 3 tiếp tuyến \(MA,MB,MC\) đến mặt cầu \(\left(S\right)\) thỏa mãn \(\widehat{AMB}=60^o,\widehat{BMC}=90^o,\widehat{CMA}=120^o\). Tính \(Q=a+b-c\)?