Bài 16. Công thức tính góc trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, tính góc giữa hai đường thẳng: 

\(\Delta_1:\left\{{}\begin{matrix}x=1+2t\\y=1-t\\z=2+3t\end{matrix}\right.\) và \(\Delta_2:\dfrac{x-2}{-1}=\dfrac{x+1}{1}=\dfrac{z-2}{2}\).

datcoder
27 tháng 10 lúc 22:17

Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {2; - 1;3} \right)\), đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( { - 1;1;2} \right)\).

Do đó: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {2.\left( { - 1} \right) - 1.1 + 3.2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {3^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {2^2}} }} = \frac{{\sqrt {21} }}{{14}}\)

Suy ra: \(\left( {{\Delta _1},{\Delta _2}} \right) \approx 70,{9^o}\)